Tsunami science has evolved significantly since the occurrence of two of the most destructive
natural disasters in recent times: the 26 December 2004 Sumatra tsunami that killed about 230
000 people along the coasts of 14 countries in the Indian Ocean and the 11 March 2011 Tohoku
(Great East Japan) tsunami that killed almost 20 000 people and destroyed the Fukushima Daiichi
nuclear power plant. As a result of these and many other destructive tsunamis that have
occurred over just the last decade scientists from around the world have come together to
engage in tsunami research. The global community of researchers has also expanded by discipline
adapting advances in other sciences to study all aspects of tsunami hydrodynamics detection
generation and probability of occurrence. The papers presented in this third of three topical
volumes of Pure and Applied Geophysics reflect the state of tsunami science during this time.
Five papers from diverse geographic regions ranging from off South Africa to northern
Kamchatka demonstrate the global nature of tsunami hazards. Six papers on tsunami hydrodynamic
analysis and modeling form the core of this volume similar to the previous two volumes of
Global Tsunami Science. As a forefront of tsunami research five papers discuss prehistoric
tsunamis and tsunami generation by phenomena other than earthquakes. Finally tsunami warning
and real-time forecasting are important outcomes of tsunami science and are represented in this
volume by four papers. Collectively this volume highlights contemporary trends in global
tsunami science both fundamental and applied toward hazard assessment and mitigation. The
volume is of interest to scientists and practitioners involved in all aspects of tsunamis from
source processes to coastal impacts. Postgraduate students in geophysics oceanography and
coastal engineering - as well as students in the broader geosciences civil and environmental
engineering - will also find the book to be a valuable resource as it combines recent case
studies with advances in tsunami science and natural hazards mitigation.