9783031423321 - SpringerBriefs in Mathematics   Deep Learning for Fluid Simulation and Animation - Gilson Antonio Giraldi Liliane Rodrigues de Almeida Antonio Lopes Apolinário Jr Leandro Tavares Da Silva Kartoniert (TB)

EAN: 9783031423321

Produktdaten aktualisiert am: 22.11.2024
Hersteller: - Hersteller-ArtNr. (MPN): - ASIN: -

This book is an introduction to the use of machine learning and data-driven approaches in fluid simulation and animation as an alternative to traditional modeling techniques based on partial differential equations and numerical methods - and at a lower computational cost. This work starts with a brief review of computability theory aimed to convince the reader - more specifically researchers of more traditional areas of mathematical modeling - about the power of neural computing in fluid animations. In these initial chapters fluid modeling through Navier-Stokes equations and numerical methods are also discussed. The following chapters explore the advantages of the neural networks approach and show the building blocks of neural networks for fluid simulation. They cover aspects related to training data data augmentation and testing. The volume completes with two case studies one involving Lagrangian simulation of fluids using convolutional neural networks and the other using Generative Adversarial Networks (GANs) approaches.

Produktzustand:

Verfügbarkeit:

Versandkosten:

Sonderpreis:

Loading
Barcode:
9783031423321
QR-Code:
Sie sind Shopbetreiber? Listen Sie ganz einfach Ihre Produkte hier bei uns im Portal >>>